首页> 外文OA文献 >Inexact cuts in Deterministic and Stochastic Dual Dynamic Programming applied to linear optimization problems
【2h】

Inexact cuts in Deterministic and Stochastic Dual Dynamic Programming applied to linear optimization problems

机译:确定性和随机双动态规划中的不精确切割   适用于线性优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce an extension of Dual Dynamic Programming (DDP) to solve lineardynamic programming equations. We call this extension IDDP-LP which applies tosituations where some or all primal and dual subproblems to be solved along theiterations of the method are solved with a bounded error (inexactly). Weprovide convergence theorems both in the case when errors are bounded and forasymptotically vanishing errors. We extend the analysis to stochastic lineardynamic programming equations, introducing Inexact Stochastic Dual DynamicProgramming for linear programs (ISDDP-LP), an inexact variant of SDDP appliedto linear programs corresponding to the situation where some or all problems tobe solved in the forward and backward passes of SDDP are solved approximately.We also provide convergence theorems for ISDDP-LP for bounded andasymptotically vanishing errors. Finally, we present the results of numericalexperiments comparing SDDP and ISSDP-LP on a portfolio problem with directtransation costs modelled as a multistage stochastic linear optimizationproblem. On these experiments, for some values of the noises, ISDDP-LP canconverge significantly quicker than SDDP.
机译:我们引入了对偶动态规划(DDP)的扩展来求解线性动态规划方程。我们称此扩展IDDP-LP适用于以下情况,其中沿着方法迭代要解决的一些或全部原始和对偶子问题以有限误差(不精确地)求解。我们提供了误差定界和渐近消失误差时的收敛定理。我们将分析扩展到随机线性动力学规划方程,引入线性规划的不精确随机对偶动态规划(ISDDP-LP),这是SDDP的不精确变体,适用于线性规划,对应于在正向和反向传递中要解决某些或所有问题的情况SDDP可以近似求解。我们还为有界和渐近消失误差提供了ISDDP-LP的收敛定理。最后,我们提出了在SDDP和ISSDP-LP上的投资组合问题的数值实验结果,该投资组合问题的直接交易成本建模为多阶段随机线性优化问题。在这些实验中,对于某些噪声值,ISDDP-LP的收敛速度明显快于SDDP。

著录项

  • 作者

    Guigues, Vincent;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号